Main Page: Difference between revisions

From dada-engine.org
No edit summary
No edit summary
 
(25 intermediate revisions by the same user not shown)
Line 1: Line 1:
<languages/>
<translate>
== Goal == <!--T:33-->
</translate>


'''Si vous arrivez ici maintenant, merci de revenir dans quelques jours, j’aurai alors posé plus d’informations pour démarrer.'''
[[File:Animation cycle recepteur ideal.gif|frame|right|<translate><!--T:34--> receiver cycle<br />(heat pump)</translate>]]
<translate><!--T:35-->
To develop a reversible [https://en.wikipedia.org/wiki/Heat_engine heat engine], which circulates a gas in a closed circuit between two insulating cylinders of different volumes, through two heat exchangers, in order to approach the [https://en.wikipedia.org/wiki/Carnot_cycle Carnot cycle].
 
<!--T:36-->
This machine can be used to design heat pumps or refrigerators without greenhouse gases such as R93, as there is no phase change. It could also be used as a motor, producing mechanical energy by transferring heat from a hot source to a cold source.
 
<!--T:37-->
On a similar principle, the [https://en.wikipedia.org/wiki/Stirling_engine Stirling engine] has been around for two centuries, in this engine the cylinders are also the heat exchangers, the innovative idea here is to transfer heat as the gas passes from one cylinder to another.
 
<!--T:38-->
In the theoretical machine that [https://en.wikipedia.org/wiki/Nicolas_L%C3%A9onard_Sadi_Carnot Sadi Carnot] used to describe his ideal cycle, the hot and cold sources must act alternately in the same place, which seems technically unfeasible. The use of two cylinders and two heat exchangers makes it possible to imitate this machine, but induces friction and dead volume.</translate><br clear=all>
 
<translate>
== Ideal cycle == <!--T:39-->
 
=== Motor cycle === <!--T:40--></translate>


== Objectif ==
[[File:Animation cycle récepteur idéal.gif|frame|right|cycle récepteur<br />(pompe à chaleur)]]Développer une machine thermique inversible, qui fait circuler un gaz en circuit fermé entre deux cylindres de volumes différents, à travers deux échangeurs thermiques, afin d’approcher le cycle de Carnot.
La machine de Carnot, si elle n’était pas théorique, serait presque impossible à réaliser du fait que la source chaude et la source froide doivent agir alternativement au même endroit. L’usage de deux cylindres et deux échangeurs thermiques résout ce problème, mais induit des frottements et un volume mort.<br clear=all>
== Cycle idéal ==
{| class="wikitable"
{| class="wikitable"
|+Cycle moteur
|<translate><!--T:41--> '''1 Adiabatic compression:''' The gas is compressed in the small cylinder, increasing its temperature.</translate>
|'''1 Compression adiabatique :''' Le gaz est compressé dans le petit cylindre, sa température augmente.
|[[File:moteur_compression_adiabatique.png|frameless|<translate><!--T:42--> the large cylinder remains empty</translate>]]
|[[File:Cycle moteur, compression adiabatique.png|frameless|le grand cylindre est vide]]
|-
|-
|'''2 Détente isotherme :''' Le gaz se détend du petit cylindre vers le grand cylindre en recevant de la chaleur dans le premier échangeur thermique.
|<translate><!--T:43--> '''2 Isothermal expansion:''' The gas expands from the small cylinder to the large cylinder, receiving heat in the first heat exchanger.</translate>
|[[File:Cycle moteur, détente isotherme.png|frameless|le petit cylindre se vide entièrement pendant que le grand cylindre se remplit en partie]]
|[[File:moteur_detente_isotherme.png|frameless|<translate><!--T:44--> the small cylinder empties completely while the large cylinder partially fills</translate>]]
|-
|-
|'''3 Détente adiabatique :''' Le gaz continue de se détendre dans le grand cylindre, sa température diminue.
|<translate><!--T:45--> '''3 Adiabatic expansion:''' The gas continues to expand in the large cylinder, reducing its temperature.</translate>
|[[File:Cycle moteur, détente adiabatique.png|frameless|le petit cylindre reste vide]]
|[[File:moteur_detente_adiabatique.png|frameless|<translate><!--T:46--> the small cylinder remains empty</translate>]]
|-
|-
|'''4 Compression isotherme :''' Le gaz est compressé du grand cylindre vers le petit, de la chaleur est extraite dans le deuxième échangeur thermique.
|<translate><!--T:47--> '''4 Isothermal compression:''' Gas is compressed from the large cylinder to the small one, and heat is extracted in the second heat exchanger.</translate>
|[[File:Cycle moteur, compression isotherme.png|frameless|le grand cylindre se vide entièrement pendant que le petit se remplit entièrement]]
|[[File:moteur_compression_isotherme.png|frameless|<translate><!--T:48--> the large cylinder empties completely while the small one fills completely</translate>]]
|}
|}
----
 
<translate>
=== Receiver cycle === <!--T:49-->
</translate>
 
{| class="wikitable"
{| class="wikitable"
|+Cycle récepteur
|<translate><!--T:50--> '''1 Adiabatic expansion:''' The gas is expanded in the small cylinder, reducing its temperature.</translate>
|'''1 Détente adiabatique :''' Le gaz est détendu dans le petit cylindre, sa température diminue.
|[[File:Recept_detente_adiabatique.png|frameless|<translate><!--T:51--> the large cylinder remains empty</translate>]]
|[[File:Détente adiabatique.png|frameless|le grand cylindre reste vide]]
|-
|-
|'''2 Détente isotherme :''' Le gaz  se détend du petit cylindre vers le grand cylindre en captant de la chaleur dans le premier échangeur thermique.
|<translate><!--T:52--> '''2 Isothermal expansion:''' The gas expands from the small cylinder to the large cylinder, capturing heat in the first heat exchanger.</translate>
|[[File:Détente isoterme.png|frameless|le petit cylindre se vide totalement, alors que le grand se remplit en entier]]
|[[File:Recept_detente_isotherme.png|frameless|<translate><!--T:53--> the small cylinder empties completely, while the large cylinder fills completely</translate>]]
|-
|-
|'''3 Compression adiabatique :''' Le gaz est compressé dans le grand cylindre, sa température augmente.
|<translate><!--T:54--> '''3 Adiabatic compression:''' The gas is compressed in the large cylinder, increasing its temperature.</translate>
|[[File:Compression adiabatique.png|frameless|le petit cylindre reste vide]]
|[[File:Recept_compression_adiabatique.png|frameless|<translate><!--T:55--> the small cylinder remains empty</translate>]]
|-
|-
|'''4 Compression isotherme :''' Le gaz est compressé du grand cylindre vers le petit, en relâchant de la chaleur dans le deuxième échangeur thermique.
|<translate><!--T:56--> '''4 Isothermal compression:''' The gas is compressed from the large cylinder to the small one, releasing heat in the second heat exchanger.</translate>
|[[File:Compression isotherme.png|frameless|le grand cylindre se vide entièrement pendant que le petit se remplit en partie]]
|[[File:Recept_compression_isotherme.png|frameless|<translate><!--T:57--> the large cylinder empties completely while the small one partially fills</translate>]]
|}
|}
== Thermodynamique ==
=== Températures de fonctionnement ===
Les [[températures extrêmes]] atteintes par le gaz dépendent de la nature du gaz, de sa pression initiale, et de la course des pistons lors des phases adiabatiques. Une machine permettant de modifier ce dernier paramètre permettrait de travailler avec des températures variables.
=== Transferts de chaleur ===
La réalisation de phases isothermes dans le cycle idéal nécessite l’adéquation entre :
* la nature du gaz, sa pression initiale,
* les caractéristiques des échangeurs thermiques, la différence entre les températures des sources chaude et froide et les températures extrêmes du gaz,
* le rapport des volumes des deux cylindres.


== Mécanique ==
<translate>
Les possibilités techniques pour animer les pistons sont nombreuses, en particulier pour le cycle récepteur, solénoïdes, arbre à cames, vérins mais un simple mécanisme [[4 barres]] semble prometteur pour la réalisation d’une pompe à chaleur ''low tech'' efficace :[[File:Animation recepteur 4 barres.gif|center|Pompe à chaleur animée par deux mécanismes 4 barres symétriques]]
== Thermodynamics == <!--T:58-->
== C’est libre ? ==
 
Totalement ! La description de cette invention est publiée ici sous license [https://creativecommons.org/publicdomain/zero/1.0/deed.fr Creative Commons Zero], cependant je ne peux vous garantir que tout ou partie de cette machine ne soit pas actuellement protégé par un brevet.
=== Operating temperatures === <!--T:59-->
 
<!--T:60-->
The extreme temperatures reached by the gas depend on the nature of the gas, its initial pressure, and the stroke of the pistons during adiabatic phases. A machine capable of modifying the latter parameter would allow working with variable temperatures.
 
=== Heat transfer === <!--T:61-->
 
<!--T:62-->
The realization of isothermal phases in the ideal cycle requires the matching of :
* the nature of the gas and its initial pressure,
* the characteristics of the heat exchangers, the difference between the temperatures of the hot and cold sources and the extreme temperatures of the gas,
* the volume ratio of the two cylinders.
 
== Mechanics == <!--T:63-->
 
<!--T:64-->
The technical possibilities for animating the pistons are numerous, particularly for the receiver cycle, solenoids, camshafts, cylinders but a simple [[Special:MyLanguage/4-bar mechanism|4-bar mechanism]] seems promising for the realization of an efficient low tech heat pump:</translate>[[File:Animation recepteur 4 barres.gif|center|<translate><!--T:65--> Heat pump animated by two symmetrical 4-bar mechanisms</translate>]]
 
<translate>
== Is it free? == <!--T:66-->
 
<!--T:67-->
Totally! The description of this invention is published here under [https://creativecommons.org/publicdomain/zero/1.0/deed.en Creative Commons Zero] license, however I cannot guarantee that all or part of this machine is not currently protected by a patent.
 
<!--T:68-->
I sincerely hope that this idea will help reduce greenhouse gases emissions, and I'm convinced that making it free is the best thing I can do to facilitate its development and rapid spread.
 
== You can help! == <!--T:69-->
 
<!--T:70-->
By contributing with your ideas, knowledge, translations, corrections to the wiki; and also links to your work in case you don't want to contribute under the CC0 license.


J’espère profondément que cette idée participe à la réduction des émissions de gaz à effet de serre, et je suis convaincu que de la rendre libre est la meilleure chose à faire pour faciliter son développement et sa diffusion rapide.
Just register and edit.
== Vous pouvez aider ! ==
En apportant au wiki vos idées, vos connaissances, des traductions, des corrections ; et aussi des liens vers vos réalisations au cas où vous ne souhaiteriez pas partager sous license CC0. Il suffit de s’inscrire, et éditer.


Vous pouvez aussi [https://www.papayoux-solidarite.com/fr/collecte/machine-thermique-libre faire un don].
<!--T:71-->
You can also make a donation.
</translate>

Latest revision as of 03:45, 23 November 2023

Other languages:

Goal

receiver cycle
(heat pump)

To develop a reversible heat engine, which circulates a gas in a closed circuit between two insulating cylinders of different volumes, through two heat exchangers, in order to approach the Carnot cycle.

This machine can be used to design heat pumps or refrigerators without greenhouse gases such as R93, as there is no phase change. It could also be used as a motor, producing mechanical energy by transferring heat from a hot source to a cold source.

On a similar principle, the Stirling engine has been around for two centuries, in this engine the cylinders are also the heat exchangers, the innovative idea here is to transfer heat as the gas passes from one cylinder to another.

In the theoretical machine that Sadi Carnot used to describe his ideal cycle, the hot and cold sources must act alternately in the same place, which seems technically unfeasible. The use of two cylinders and two heat exchangers makes it possible to imitate this machine, but induces friction and dead volume.

Ideal cycle

Motor cycle

1 Adiabatic compression: The gas is compressed in the small cylinder, increasing its temperature. the large cylinder remains empty
2 Isothermal expansion: The gas expands from the small cylinder to the large cylinder, receiving heat in the first heat exchanger. the small cylinder empties completely while the large cylinder partially fills
3 Adiabatic expansion: The gas continues to expand in the large cylinder, reducing its temperature. the small cylinder remains empty
4 Isothermal compression: Gas is compressed from the large cylinder to the small one, and heat is extracted in the second heat exchanger. the large cylinder empties completely while the small one fills completely

Receiver cycle

1 Adiabatic expansion: The gas is expanded in the small cylinder, reducing its temperature. the large cylinder remains empty
2 Isothermal expansion: The gas expands from the small cylinder to the large cylinder, capturing heat in the first heat exchanger. the small cylinder empties completely, while the large cylinder fills completely
3 Adiabatic compression: The gas is compressed in the large cylinder, increasing its temperature. the small cylinder remains empty
4 Isothermal compression: The gas is compressed from the large cylinder to the small one, releasing heat in the second heat exchanger. the large cylinder empties completely while the small one partially fills

Thermodynamics

Operating temperatures

The extreme temperatures reached by the gas depend on the nature of the gas, its initial pressure, and the stroke of the pistons during adiabatic phases. A machine capable of modifying the latter parameter would allow working with variable temperatures.

Heat transfer

The realization of isothermal phases in the ideal cycle requires the matching of :

  • the nature of the gas and its initial pressure,
  • the characteristics of the heat exchangers, the difference between the temperatures of the hot and cold sources and the extreme temperatures of the gas,
  • the volume ratio of the two cylinders.

Mechanics

The technical possibilities for animating the pistons are numerous, particularly for the receiver cycle, solenoids, camshafts, cylinders … but a simple 4-bar mechanism seems promising for the realization of an efficient low tech heat pump:

Heat pump animated by two symmetrical 4-bar mechanisms
Heat pump animated by two symmetrical 4-bar mechanisms

Is it free?

Totally! The description of this invention is published here under Creative Commons Zero license, however I cannot guarantee that all or part of this machine is not currently protected by a patent.

I sincerely hope that this idea will help reduce greenhouse gases emissions, and I'm convinced that making it free is the best thing I can do to facilitate its development and rapid spread.

You can help!

By contributing with your ideas, knowledge, translations, corrections to the wiki; and also links to your work in case you don't want to contribute under the CC0 license.

Just register and edit.

You can also make a donation.